segunda-feira, 28 de abril de 2014

 = x2 - x + logx/x [n...] =


dy =   x2dx -  xdx + dx + logx/x [n...]







\begin{align}
\frac{\mathrm{d}}{\mathrm{d}x} &\left (\int_{a(x)}^{b(x)}f(x,t)\,\mathrm{d}t \right)= \\
&\quad= f(x,b(x))\,b'(x) - f(x,a(x))\,a'(x) + \int_{a(x)}^{b(x)} f_x(x,t)\; \mathrm{d}t.
\end{align}+ logx/x [n...]



\frac{\mathrm{d}}{\mathrm{d}t} \int_{D(t)} F(\vec{\textbf x}, t) \,\mathrm{d}V = \int_{D(t)} \frac{\partial}{\partial t} \,F(\vec{\textbf x}, t)\,\mathrm{d}V + \int_{\partial D(t)} \,F(\vec{\textbf x}, t)\, \vec{\textbf v}_b \cdot \mathrm{d}\mathbf{\Sigma} + logx/x [n...] =




\varphi(\alpha) = \int_a^b f(x,\alpha)\;\mathrm{d}x. logx/x [n...]

Nenhum comentário:

Postar um comentário